

JW19987A

Non-isolated Buck LED Driver Regulator

Parameters Subject to Change Without Notice

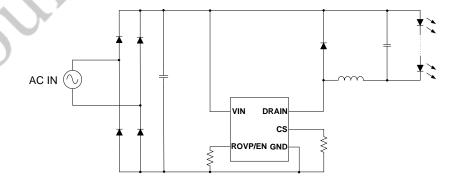
DESCRIPTION

JW[®]19987A/JW19987B/JW19987C(JW19987X series) is a non-isolated constant current LED regulator with high current accuracy which applies to single stage step-down LED drivers. Operating in the boundary mode makes it high efficiency and low radiation. Patented algorithms ensure good current accuracy and excellent line/load regulations.

JW19987X is supplied from the line directly without auxiliary winding or external capacitor, which can lower the system BOM cost.

With unique sampling techniques, JW19987X has multi-protection functions which can largely enhance the safety and reliability of the system, including LED short protection, LED open protection and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.


FEATURES

- 500V MOSFET Integrated
- **Excellent Line/load Regulation**
- **Boundary Mode Operation**
- **EN Function**
- High Efficiency
- LED Short Protection
- **LED Open Protection**
- SOP7 package

APPLICATIONS

LED Driver

TYPICAL APPLICATION

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL3)
JW19987ASOPA#TRPBF	SOP7	JW19987A YW□□□□□	Green
JW19987BSOPA#TRPBF	SOP7	JW19987B YW□□□□□	Green
JW19987CSOPA#TR	SOP7	JW19987C YW□□□□□	Green

Note:


3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

DEVICE INFORMATION

DEVICE	MOS BV	MOS RDSON
JW19987ASOPA#TRPBF	500V	8Ω
JW19987BSOPA#TRPBF	500V	6.5Ω
JW19987CSOPA#TR	500V	2.9Ω

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING1)

VIN Voltage	
CS Voltage	
ROVP Voltage	0.3V to 8V
DRAIN Pin	500V
Junction Temperature ²⁾³⁾	40°C to + 150°C
Storage Temperature	40°C to +150°C

RECOMMENDED OPERATING CONDITIONS

VIN Voltage	400V
Junction Temperature	A U

DN/Dookogo	Limit Output Current	Recommended MAX Output Current
PN/Package	(T _J =125°C) ⁵⁾	(T _J =125°C) ⁵
JW19987A/SOP7	<350mA	280mA ⁶
JW19987B/SOP7	<500mA	350mA ⁶
JW19987C/SOP7	<800mA	500mA ⁶

RECOMMENDED OUTPUT VOLTAGE

JW19987X.....>10V

THERMAL PERFORMANCE⁴⁾

 θ_{IA} θ_{IC}

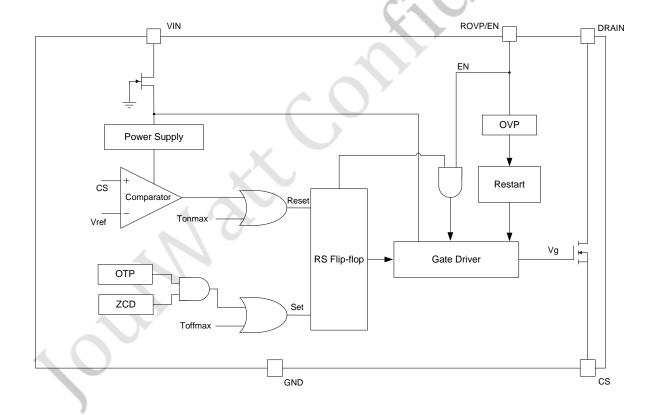
SOP7......96...45°C/W

Note

- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDE OPERATING CONDITIONS.
- 2) The JW19987X includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.
- 5) The maximum output current is recommended in the application according to chip junction temperature TJ=125℃. The maximum output current could be increased properly if the heat dissipation is better.
- 6) Limited by chip temperature.

ELECTRICAL CHARACTERISTICS

T_A =25 $^{\circ}C$, unless otherwise stated							
	ltem	Symbol	Condition	Min.	Тур.	Max.	Units
Threshold of Vir	n Power On ⁷⁾	V _{IN_ON}	V _{IN} rising		5	20	V
V _{IN} Quiescent C	Current	ΙQ	V _{IN} ~40V		200	220	μΑ
Reference Volta	age	V _{REF}		390	402	420	mV
CS Minimum Vo	oltage	CSmin			50		mV
Neon Switch VI	N Sink Current	I _{NNSK}			540	(μA
Mos Max On Tir	me	Tonmax		30	42	55	μs
Mos Min On Tin	ne ⁷⁾	T _{ONMIN}			0.6	0.8	μs
Mos Max Off Tir	me_1	T _{OFFMAX_1}		280	400	528	μs
Mos Max Off Tir	me_2	Toffmax_2		28	40	53	μs
EN Low Voltage	e Threshold	V _{EN_L}	6	0.16	0.2	0.24	V
Va Over Veltage	Drotostion	V _{O_OVP1}	R _{OVP} =7.5K	66	75	84	>
Vo Over Voltage Threshold ⁷⁾	e Protection	Vo_ovp2	R _{OVP} =18K	108	120	132	V
Tillesiloid 7		Vo_ovp3	Rove ~float	216	240	264	>
OVP Hic-cup Ti	me ⁷⁾	Tovp_HC			400	440	ms
Drain-Source Voltage	JW19987X	BV _{DSS}	Vg=0V Ids=250µA	500			٧
	JW19987A	X \	\/a 15\/		8	9	
Mos R _{DSON}	JW19987B	R _{DS_ON}	R _{DS_ON} Vg=15V Ids=0.5A		6.5	8	ohm
	JW19987C	0			2.9	3.5	
DS Leakage Current	JW19987X	I _{DSS}	Vg=0V Vds=500V		1	5	μΑ
Thermal Protec	tion Threshold ⁷⁾	OTP _{CHIP}		140	150	160	$^{\circ}\!\mathbb{C}$


Notes:

7) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description	
1	GND	Chip ground	
2	ROVP/EN	Led ovp set pin/Enable pin	
3	NC	No connection	A
4	VIN	Power supply	
5,6	DRAIN	The drain of internal power MOSFET	
7	CS	Current sensing pin	X

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW19987X is a constant current LED regulator, which applies to non-isolation step-down LED system. JW19987X can achieve excellent line and load regulation, high efficiency and low system cost with few peripheral components.

Start Up

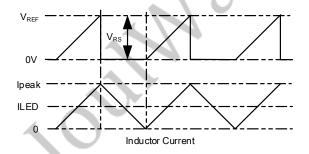
When the VIN exceeds V_{IN_ON}, the gate driver will start to switch after 10mS delay.

Constant Current Control

JW19987X controls the output current from the information of the current sensing resistor. The output LED average current can be calculated as:

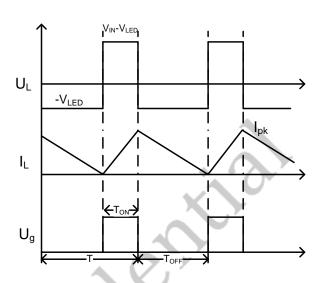
$$I_{LED} = V_{REF} / (2 R_{CS})$$

Where.


V_{REF} is the reference voltage;

 R_{CS} – the sensing resistor connected between the pin CS and chip GND.

The inductor current and V_{RS} waveforms are as follows:


Where,

V_{RS} – the voltage between pin CS and chip GND.

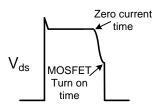
Critical Conduction Mode Operation

JW19987X works in the critical conduction mode of the inductor current. When the power MOSFET turns on, the inductor current increases from zero linearly. The turn-on time of the MOSFET can be calculated as:

 $T_{ON} = 2 I_{LED} \times L / (V_{IN} - V_{LED})$

Where,

L -inductance.


ILED - output led current.

V_{IN} – input voltage after rectification and filtering. V_{LED} – output voltage.

When the power MOSFET turns off, the inductor current decreases. The power MOSFET turns on again when the inductor current is zero. The turn-off time of the MOSFET can be calculated as:

$$T_{OFF} = 2 I_{LED} \times L / V_{LED}$$

JW19987X works in quasi-resonant mode. When the inductor current decreases to zero, resonance takes place between the power inductor, MOSFET output capacitors and stray capacitors. JW19987X can detect the zero-current signals of the inductor, and turn on the MOSFET in the valley, which can reduce the power loss and the EMI radiation. If JW19987X cannot get the zero current signals, the turn-off time will be changed to Toffmax_1. The output voltage should be higher than recommended voltage in order to avoid the loss of zero current signals.

Over Temperature Protection

When the junction temperature is higher than OTP_{CHIP}, JW19987X works in DCM by increasing the turn-off time of the MOSFET to decrease the LED current and help the chip cooling.

LED Open Protection

In the LED open condition, the output voltage increases and the duty of each cycles increases accordingly. When the VIN*D is larger than V_{O_OVP} (Setup by R_{OVP}), the power MOSFET is shut down and restarts after T_{OVP_HC} (400ms

typical). The following table shows the V_{O_OVP} design guide:

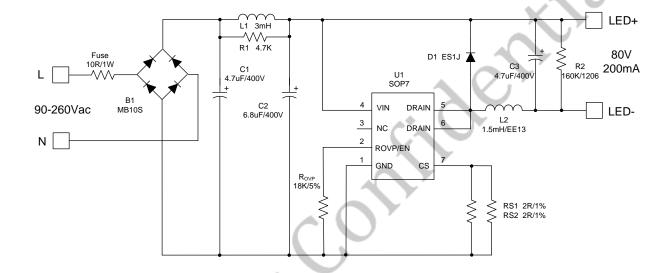
OVP Pin	$V_{O_{-}OVP}(V)$
R _{OVP} =7.5K	75V
R _{OVP} =18K	120V
R _{OVP} ~Float	240V
R _{OVP} ~Short	Shut down

LED Short Protection

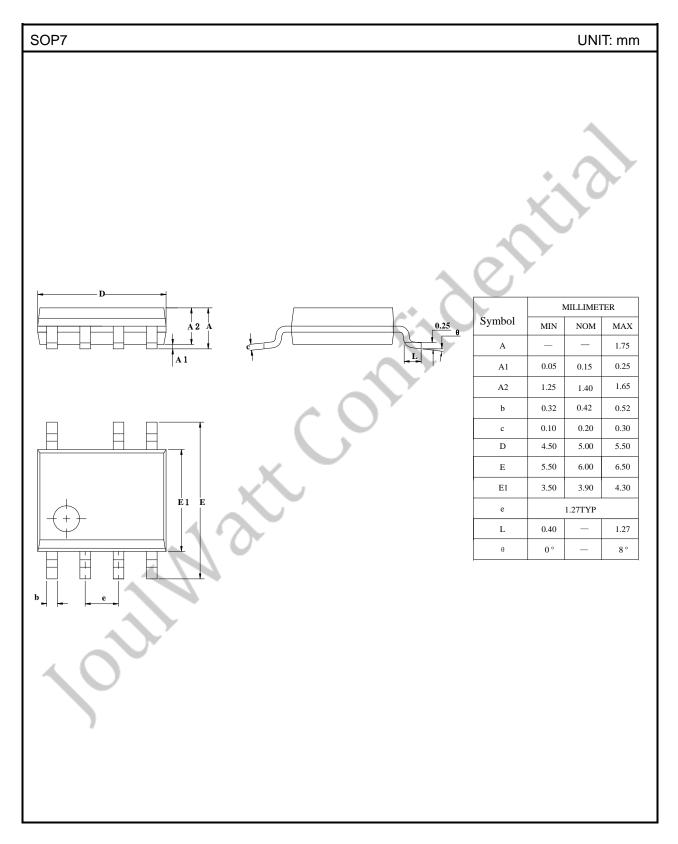
When the output is shorted, JW19987X stops switching for T_{OFFMAX_1} until the next pulse.

PCB Layout Guidelines

- 1. Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- JW19987X should be kept away from noisy and heating components, such as power inductor and diode.


APPLICATION REFERENCE

This reference design is suitable for 10~20W non-isolated step-down LED driver, using JW19987B, with high efficiency, excellent line regulation.


Reference:

V_{IN}: 90VAC~260VAC

 V_{OUT} : 40~80V I_{OUT} : 200mA PF: >0.5

PACKAGE OUTLINE

IMPORTANT NOTICE

Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements,
corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2020 JW19987X Incorporated.

All rights are reserved by Joulwatt Technology Inc