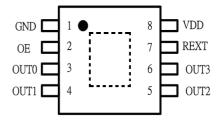


4 channel constant current LED driver


Features

- 4 constant current sink outputs
- 12 ~ 90mA channel sink current
- 3V to 5.5V supply voltage
- Excellent current sink uniformity channel to channel: < ± 3% chip to chip: < ± 4%
- OE pulse width: 120ns
- Schmitt trigger input
- 165°C thermal shutdown protect
- 5ns output group delay for stagger output
- Maximum output voltage: 30V
- -40° C ~ $+85^{\circ}$ C operating temperature

Package Type

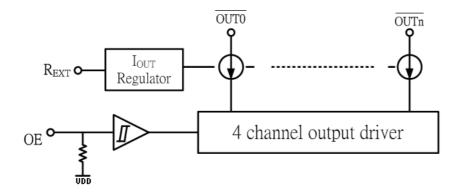
• ESOP8

(Part No.: NU514ES)

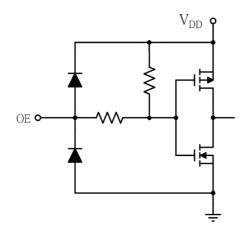
Terminal Description

Pin name	Function			
V_{DD}	5V/3.3V power supply			
GND	Chip ground pin			
R_{EXT}	Current setting resistor			
OE	Output enable			
OUT0 ~ OUT3	Constant current sink terminals			
Thermal pad	Chip ground pin potential			

Product Description


NU514 is a 4 channels constant current sink driver used for LED lighting. NU514 can sink 4 channels constant current simultaneously by the control of a single OE pin. The sink current of output channels can be set easily by an external resistor Rext. Each output channel can be connected with each other to gain higher current driving capability. With this parallel-able output capability, one NU514 can drive constant current from 12mA to 360mA being used to most types of LEDs.

Applications


- General LED Lighting
- Decoration lighting for architecture
- LCD back lighting
- Street lamp

NumEn Tech. Nu514

Block Diagram

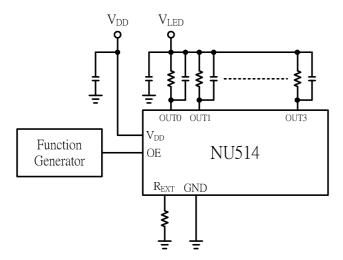
Equivalent Circuits for OE Input

Maximum Ratings (T = 25°C)

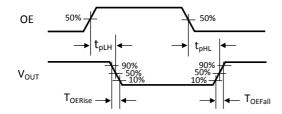
Characteristic	Symbol	Rating	Unit
Supply voltage	V_{DD}	0 ~ 6.0	V
Input pin voltage	V _{IN}	-0.2 ~ V _{DD} +0.2	V
Output current	I _{OUT}	100	mA/Channel
Output voltage	V _{out}	-0.2 ~ 30.0	V
Total GND terminals current	I _{GND}	400	mA
Power Dissipation (On PCB)	PD	1	W
Thermal Resistance	$R_{TH(j-a)}$	100	°C /W
Junction temperature	T _j	170	°C
Operating temperature (Ambient)	T _{OPR}	-40 ~ +85	°C
Storage temperature	T _{STG}	-55 ~ +150	°C

NumEn Tech. Nu514

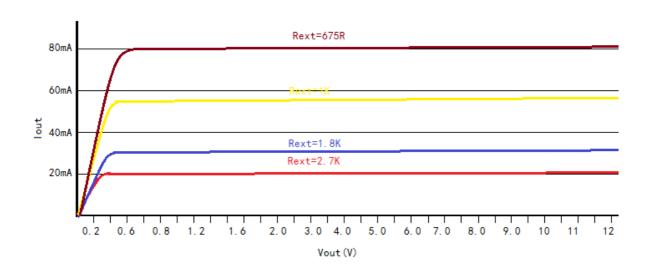
Electrical Characteristics and Recommended Operating Conditions


Characte	eristic	Symbol	Condition	Min.	Тур.	Max.	Unit	
Supply vo	oltage	$V_{ m DD}$	Room Temp. 4.5 5		5	5.5	V	
	Output port sustaining voltage		-	-	-	30	V	
Output cu	ırrent	I_{OUT}	OUTn = 1V	OUTn = 1V 12 - 90		mA		
Output lea	akage	I_{LEAK}	$V_0 = 7V$ and channel off	-	-	0.1	uA	
Channel curr (Outpu		dI_{OUT1}	$I_{OUT} = 80 \text{mA}, V_{OUT} = 1 \text{V}$	-	±1	±3	%	
Center curre (IC)		$\mathrm{dI}_{\mathrm{OUT2}}$	$I_{OUT} = 80 \text{mA}, V_{OUT} = 1 \text{V}$	-	-	±4	%	
Line regu	lation	$\%/dV_{DD}$	$R_{\rm EXT} = 900 \Omega$, $V_{\rm OUT} = 1V$	-	±0.5	±1	%	
Load regu	Load regulation		$R_{\rm EXT} = 900 \Omega$	-	±0.1	±3	%	
Innut val	Input voltage			$0.7V_{DD}$	-	-	V	
Input voi				-	ı	$0.3V_{DD}$	V	
Thermal p	Thermal protect (Junction temperature)		Half current output	-	135	-	°C	
(Junction tem			All output off	-	165	-	ر	
Pull down resi	istor (OE)	$R_{ m PU}$		400 500		700	$\mathbf{K}\Omega$	
	All output "Off"	$I_{\mathrm{DD1(off)}}$	R_{EXT} = Open, all output off	-	9	-	mA	
		$I_{\mathrm{DD2(off)}}$	$R_{EXT} = 1200 \Omega$, all output off	-	10	1	mA	
Supply current		I _{DD3(off)}	$R_{EXT} = 600 \Omega$, all output off	-	12	-	mA	
	All output	$I_{DD1(on)}$	$R_{EXT} = 1200 \Omega$, all output on	-	10	-	mA	
	"On"	I _{DD2(on)}	$R_{EXT} = 600 \Omega$, all output on	-	6	-	mA	

Switching Characteristics


Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time (OE from "L" to "H")	t _{pLH}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =80mA, OE= 0V \rightarrow 4V	100	1	250	nS
Output current rising time (OE from "L" to "H")	t _{OERise}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =80mA, OE= 0V \rightarrow 4V	100	1	250	nS
Propagation Delay Time (OE from "H" to "L")	t _{pHL}	V_{DD} =4V, V_{OUT} =1V, I_{OUT} =80mA, OE= 4V \rightarrow 0V	100	-	500	nS
Output current falling time (OE from "H" to "L")	t _{OEFall}	$V_{DD}=4V$, $V_{OUT}=1V$, $I_{OUT}=80$ mA, $OE=4V \rightarrow 0V$	100	-	250	nS

NumEn Tech. Nu514


Test Circuit for Switching Characteristics

Timing Waveforms

I/V curve

- 4 - Ver.01.7

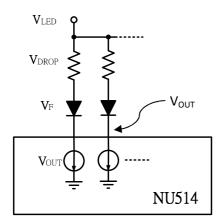
NumEn Tech. NU514

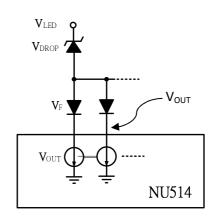
Output Current Setting

The output current of each channel of NU514 is set by an external resistor (R_{EXT}). The relationship between output current and external resistor is shown in the figure or calculated from the equation following.

$$I_{OUT}(A) = \frac{54}{R_{EXT}(\Omega)}$$

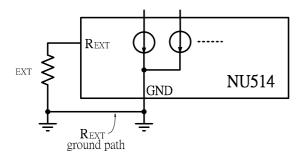
Example: $I_{OUT} = 20 \text{mA}$

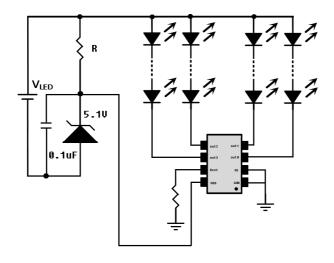

$$0.02(A) \cong \frac{54}{R(\Omega)} \implies R(\Omega) \cong \frac{54}{0.02(A)} \implies 2700(\Omega)$$

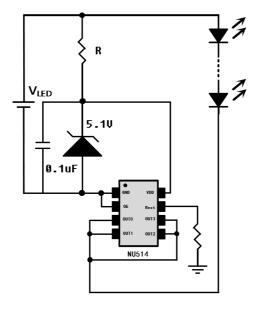

Application Notes

- In order to maximize the heat dissipation capability and keep the NU514 function normally, the thermal pad under SOP package should be soldered to the PCB and connect to the ground net of system. More the ground area, more the heat dissipation capability that NU514 relies on.
- The V_{OUT} should be as low as possible near the knee point of the output I/V curve to minimize the heat generation from NU514.
 An external resistors or zener diodes can be used to minimize V_{OUT} in the output current path. The suggestion V_{OUT} voltage is between 0.4v to 1v.

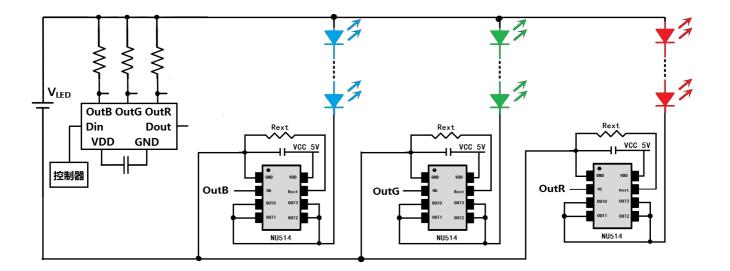
- 5 -


Ex:
$$V_{OUT} = V_{LED} - (V_{DROP} + V_F)$$

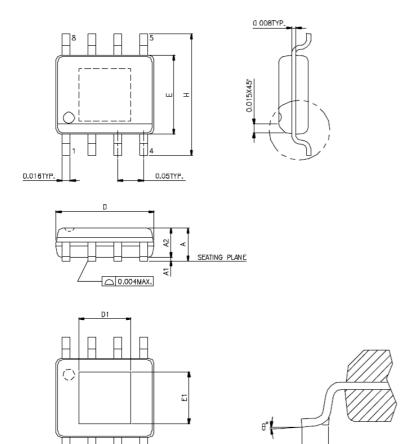



NumEn Tech. **NU514**

The R_{EXT} ground path should be as short and wide as possible to minimize the chip current skew.



Typical Application Circuit



NumEn Tech. NU514

NumEn Tech. NU514

Package Dimensions

SYMBOLS	SYMBOLS MIN.	
A	0.053	0.069
A1	0.002	0.006
A2	_	0.059
D	0.189	0.196
E	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
û°	0	8
		LINUT INCL

UNIT: INCH

THERMALLY ENHANCED DIMENSIONS

PAD SIZE		E1		D1	
90X	90E	0.081	REF	0.081	REF
95X	130E	0.086	REF	0.117	REF

UNIT: INCH

Restrictions on product use

E.P. VERSION ONLY

- This document is a preliminary specification data sheet. NUMEN Tech. reserves the right to update these specifications in the future
- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in this document shall be made at the customer's own risk.

- 8 - Ver.01.7