CdS photoconductive cell Resin coating type (5R type)

Standard type designed for general-purpose, wide application

CdS photoconductive cells utilize photoconductive effects in semiconductors that decrease their resistance when illuminated by light. These sensors are non-polar resistive elements with spectral response characteristics close to the human eye (luminous efficiency), thus making their operating circuits simple and small.

Features

- Small size, thin package
- Low price
- Wide range of sensor lineup

Applications

- Programed electronic shutter and stroboscope light control for compact camera
- Auto dimmer for digital display, CRT and room illumination
- Sensor for automatic light on/off
- Sensor for electronic toy and teaching aid material

Absolute maximum ratings / Characteristics (Typ. Ta=25 °C, unless otherwise noted)

Type No.	Absolute maximum ratings			Characteristics *1						
	Supply voltage (Vdc)	Power dissipation P (mW)	Ambient temperature Ta (°C)	Peak sensitivity wavelength λp (nm)	Cell resistance *2				Response time 10 Lx *5	
							0 lx *3	γ±0 *4	Rise time tr	Fall time tf
					Min. (kΩ)	Max. (kΩ)	Min. (MΩ)	100 to 10 Lx	(ms)	(ms)
P687-02	100	30	-30 to +50	620	5	20	5.0	0.70	60	25
P1201-04		50	-30 to +60	540	50	200	20	0.90	40	30
P1201-06					50	100				
P1241-04	50	30	-30 to +60	560	3	9	0.2	0.70		40
P1241-05					8	24	0.5	0.70	50	
P1241-06					5	20	0.5	0.75		
P1444	100		-30 to +50	620	10	50	5.0	0.85	40	10
P1445					48	140	20			

^{*1:} All characteristics are measured after exposure to light (100 to 500 lx) for one to two hours.

$$\gamma_{100}^{100} = \frac{\log (R_{100}) - \log (R_{10})}{\log (E_{100}) - \log (E_{10})}$$

E100, E10: illuminance 100 lx, 10 lx

R100, R10 resistance at 100 lx and 10 lx respectively

*5: The rise time is the time required for the sensor resistance to reach 63 % of the saturated conductance level (when fully illuminated). The fall time is the time required for the sensor resistance to decay from the saturated conductance level to 37 %.

^{*2:} The light source is a standard tungsten lamp operated at a color temperature of 2856 K.

^{*3:} Measured 10 seconds after shutting off the 10 lx light.

^{*4:} Typical gamma characteristics (within ±0.10 variations) between 100 lx to 10 lx