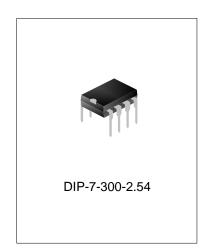


低功耗高恒流精度非隔离降压型LED照明驱动芯片


描述

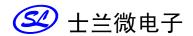
SD670XD 是一款专用于非隔离 LED 驱动的控制芯片,外围应用采取 Buck 架构,特有的采样技术辅助下,从而达到高恒流精度和高线性/负载调整率。

SD670XD 内部集成各种保护功能,包括输出开短路保护,逐周期过流保护,过温度保护等。

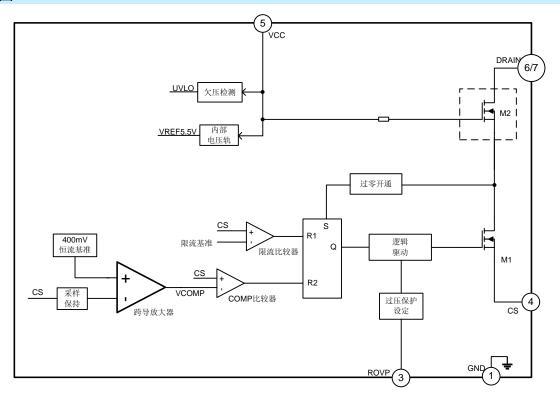
SD670XD 具有超低的启动电流和工作电流,可在全电压输入范围内(85VAC~265VAC)高效驱动高亮度 LED。

SD670XD 内置高压功率 MOSFET,有效的节约系统成本和整机体积。

特性

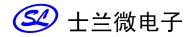

- ◆ 内置 500V 高压功率 MOSFET
- ◆ 精确恒定电流(<±3%)供给 LED
- ◆ 输出开短路保护
- ◆ CS 开短路保护
- ◆ VCC 欠压保护
- ◆ 过温保护
- ◆ 逐周期过电流保护
- ◆ 无辅助绕组

应用


- ◆ 球泡灯
- ◆ T5/T8 LED 灯具
- ◆ 各式 LED 照明应用场合

产品规格分类

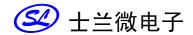
产品名称	封装类型	材料	包装
SD6701DTR	DIP-7-300-2.54	无卤	料管
SD6702DTR	DIP-7-300-2.54	无卤	料管
SD6703DTR	DIP-7-300-2.54	无卤	料管
SD6704DTR	DIP-7-300-2.54	无卤	料管


内部框图

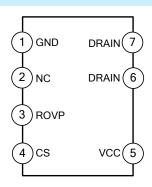
极限参数

参	数	符 号	参数范围	单位	
漏栅电压(R _{GS} =1MW)		V_{DGR}	500	V	
栅源电压		V _{GS}	±30	V	
	SD6701D		4		
	SD6702D		8		
漏端电流脉冲	SD6703D	I _{DM}	10	A	
	SD6704D		12		
	SD6701D	I _D	1		
漏端连续电流 (Tamb=25°C)	SD6702D		2		
	SD6703D		3	A	
	SD6704D		4		
电源电压		V _{cc}	-0.3~17	V	
ROVP端电压		V_{ROVP}	-0.3~6.5	V	
采样端电压		Vcs	-0.3~6.5	V	
DRAIN端电压		V_{DRAIN}	-0.3~500	V	
结温范围		Tj	-40~150	°C	
存储温度范围		Ts	-55~150	°C	

版本号: 1.1



电气参数(除非特别说明, V_{cc} =14V, T_{amb} =25°C)


参数		符号	测试条件	最小值	典型值	最大值	单位
VCC 钳位电	1.1	VCC _{CLAMP}	I _{VCC} =0.5mA	14	16	17	V
UVLO VH		UVLO _H		11.3	12.7	14.1	V
UVLO VL		UVLO _L		7	8	9	V
启动电流		I _{START}	V _{CC} =10V	50	95	125	μΑ
工作电流		Ivcc	CS=1V	100	175	250	μΑ
保护电流		I _{PRO}	CS=5V	800	1200	2000	μΑ
控制环路部	分						
CS 基准电点	玉注1	CS _{REF}		388	400	412	mV
CS 峰值保持	护电压	CS _{PEAK}		400	525	650	mV
控制时间参	数						
最大导通时	间	T _{ON,MAX}		30	38	47	μs
前沿消隐时	间	T _{LEB}		0.45	0.6	0.75	μs
最大美断时	间	T _{OFF,MAX}		40	52	64	μs
最小美断时	间	T _{OFF,MIN}		2.5	3.5	4.5	μs
最小周期		T _{MIN}		3.7	5	6.3	μs
ROVP 引脚	i 电压	V_{ROVP}		2	2.4	2.8	V
内置高压 🖊	IOSFET						
	SD6701D				7.5	8.6	
日海中四	SD6702D] _	V _{GS} =12V, I _D =0.1A		5	5.7	Ω
守地电阻	SD6703D	R _{DSON}			2.8	3.3	
	SD6704D				1.9	2.5	
	SD6701D		V _{GS} =0V, I _D =50uA	500	550		V
足地群厅	SD6702D	DV		500	550		
导通电阻	SD6703D	BV _{DSS}		500	550		
	SD6704D			500	550		
	SD6701D	I _{DSS}	V _{DS} =500V, V _{GS} =0V			1.0	μА
零栅压	SD6702D					1.0	
漏端电流	SD6703D					1.0	
	SD6704D					1.0	
	SD6701D	I _{GSS}				±100	nA
栅源	SD6702D		V _{GS} =±30V, V _{DS} =0V			±100	
漏电流	SD6703D					±100	
	SD6704D					±100	
温度特性	1	1		1	<u> </u>	1	
过热调节		T _{REG}		125	140	155	°C
过温保护		T _{SD}		135	150	165	°C
过温解除		+	 	115	130	145	°C

注 1: CS 基准在测试中,会乘以 1.1 倍,即在测试数据中显示的是 440mV 中心值,范围为 430mV~450mV。

杭州士兰微电子股份有限公司

管脚排列图

管脚描述

管脚编号	管脚名称	I/O	功能描述
1	GND	GND	地
2	NC	/	空脚
3	ROVP	I/O	过压保护设置引脚,外接电阻到地
4	CS	1	采样电流
5	VCC	POWER	电源
6, 7	DRAIN	0	内置高压 MOSFET 漏端

功能描述

SD670XD是一款利用BUCK原理搭建的非隔离LED照明驱动芯片,内置高压功率MOSFET。以下是对芯片各功能的具体描述。

启动控制

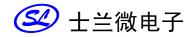
SD670XD 无需辅助绕组供电。母线电压通过启动电阻对 VCC 电容充电。因此芯片的工作电流需要尽可能低,这样才能得到高转换效率。VCC 端具有欠压保护功能,开启/关断电压阀值设定在 12.7V 和 8V。迟滞特性确保启动期间输入电容能给芯片正常供电。

恒流精度控制

芯片采样 MOS 管电流,经过特有的采样技术处理后,进入内部跨导放大器,和内部基准电压进行误差放大,从而得到高恒流精度和高负载调整率,高线性调整率。

CS 电压和 400mV 基准电压进入跨导放大器进行误差放大,并通过内部 Comp 电容积分。

IOUT=400mV/2*RCS。


临界导通模式

SD670XD 工作在临界模式,抗干扰能力强,转换效率高。芯片无需辅助绕组检测电感电流过零,外围应用简单。

电流检测和前沿消隐

芯片具有逐周期限流保护功能。不正常状态下,CS 电压会超过 525mV 的 CS 峰值保护电压时,芯片关断内部开关 M1,系统仍保持正常工作,下个周期内部开关 M1 正常开启。限流比较器不设前沿消隐时间。

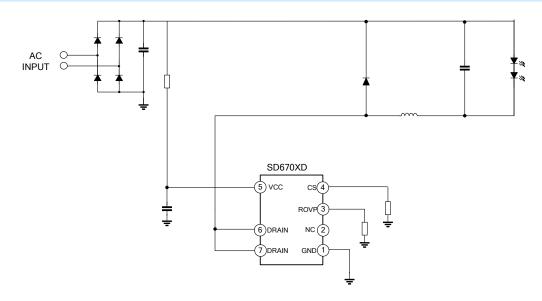
COMP 比较器比较 CS 和 COMP 电压,当 CS 超过 COMP 电压后,芯片关断内部开关 M1,系统仍保持正常工作。在内部开关 M1 开通的瞬间,0.6us 的前沿消隐时间可以避免内部开关 M1 误关断。

CS 开短路保护(也可称为最大输出电流限制)

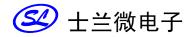
一旦 CS 电阻被短路,电感电流不再有限流限制, CS 管脚电压为零,此时通过检测内部 OUT 信号在开通时的电压 高低来判断是否进入 CS 电阻短路状态。SD670XS 各系列产品有着各自的设定 OUT 限制电压,随着合封高压 MOS 增 大同时内部 OUT 限制电压会相应增加,从而输出电流限制也可以相应增加。具体各系列产品的最大输出电流限制请参 考应用说明。

源极驱动

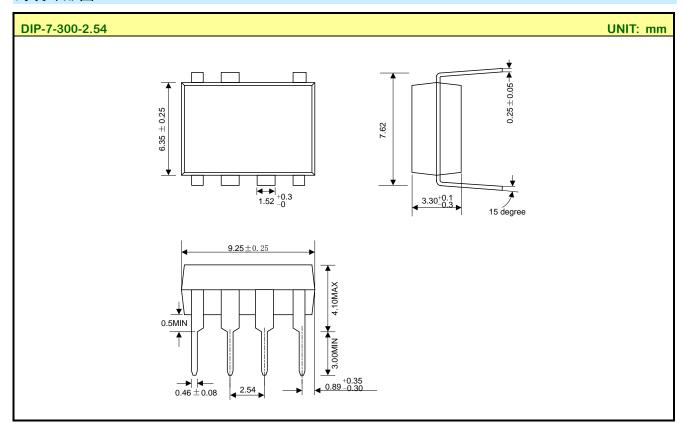
芯片采用源极驱动技术,合封高压功率管 M2 的栅极通过一定阻值连接 VCC,源极连接内部开关 M1 的漏极。芯片 驱动内部开关 M1 的栅极,由于 M1 的栅极电容小,源极驱动技术有效的减小芯片工作电流,从而无需辅助绕组供电。


输出开路保护

由于没有直接反映输出端的信号,芯片采取检测放电时间是否异常的情况下来判断输出是否过压。输出过压保护点 可通过 ROVP 管脚设置。ROVP 管脚必须外接一电阻到地,具体阻值选取及如何使用见应用文档。

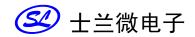

内设温度调节功能

内部设置温度调节功能,当芯片温度超过一定点后,输出电流将会逐步下降。


典型应用线路图

版本号: 1.1

封装外形图


MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- ◆ 装配过程中使用的工具必须接地。
- ◆ 必须采用导体包装或抗静电材料包装或运输。

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品	名称:	SD670XD	文档类型:	说明	书	
版 权:		杭州士兰微电子股份有限公司	公司主页:	http:	//www.s	silan.com.cn
版	本:	1.1		作	者:	姚丰
	平: 记录:	1.1		IF	41;	グルー
	1. 修改	立 功能描述				
版	本:	1.0		作	者:	姚丰
修改	记录:					
	1. 正式					