

SS8870T 3.6-A Brushed DC Motor Driver

FEATURES

- H-Bridge Motor Driver
 Drives One DC Motor, One Winding of a Stepper
 Motor, or Other Loads
- Wide 6.5V to 40V Operating Voltage
- . 3.6-A Peak Current Drive
- PWM Control Interface
- . Integrated Current Regulation
- . Low-Power Sleep Mode
- VM under voltage Lockout (UVLO)
- Overcurrent Protection (OCP)
 Retry after OCP: SS8870T
- Thermal Shutdown (TSD)
- . Automatic Fault Recovery
- . ESOP8 Small Package and Footprint

APPLICATIONS

- Printers
- Appliances
- Industrial Equipment
- Other Mechatronics Applications

TYPICAL APPILCATION

GENERAL DESCRIPTION

The SS8870T devices are a brushed-DC motor driver for printers, appliances, industrial equipment, and other small machines. Two logic inputs control the H-bridge driver, which consists of four N-channel MOSFETs that can control motors bi-directionally with up to 3.6-A peak current. The inputs can be pulse width modulated (PWM) to control motor speed, using a choice of current-decay modes. Setting both inputs slow enter a low-power sleep mode.

The SS8870T devices feature integrated current regulation, based on the analog input VREF and the voltage on the ISEN pin, which is proportional to motor current through an external sense resistor. The ability to limit current to a known level can significantly reduce the system power requirements and bulk capacitance needed to maintain stable voltage, especially for motor startup and stall conditions.

The devices are fully protected from faults and short circuits, including UVLO, OCP, and TSD.

Figure 1. Basic Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Deveneter	Va	lue	11
Parameter	Min	Max	Unit
Power supply voltage (VM)	-0.3	45	V
Logic input voltage (IN1, IN2)	-0.3	6	V
Reference input pin voltage (VREF)	-0.3	6	V
Continuous phase node pin voltage (OUT1, OUT2)	-0.7	VM+0.7	V
Current sense input pin voltage (ISEN)	-0.5	1	V
Output current (100% duty cycle)	0	3.5	A
Operating junction temperature (Note 2)	-40	150	°C
Storage temperature	-65	150	°C

PACKAGE/ORDER INFORMATION

ESOP8

Part Number	Package	Top mark	Quantity/ Reel
SS8870T	ESOP8	-	3000

PIN FUNCTIONS

Pin	Name	Function
1	GND	Logic ground. Connect to board ground
2	IN2	Logic inputs. Controls the H-bridge output. Has 100K Ω internal pulldowns.
3	IN1	Logic inputs. Controls the H-bridge output. Has 100K Ω internal pulldowns.
4	VREF	Analog input. Apply a voltage between 0.3V to 5 V.
5	VM	6.5V to 40V power supply. Connect a $0.1\mu F$ bypass capacitor to ground, as well as
5	VIVI	sufficient bulk capacitance, rated for the VM voltage.
6	OUT1	H-bridge output. Connect directly to the motor or other inductive load.
		High-current ground path. If using current regulation, connect ISEN to a resistor
7	ISEN	(low-value, high-power-rating) to ground. If not using current regulation, connect
		ISEN directly to ground.
8	OUT2	H-bridge output. Connect directly to the motor or other inductive load.

ESD RATING

Items	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
VM	Power supply voltage range	6.5	40	V
τı	Operating Junction Temperature Range	-40	125	°C

ELECTRICAL CHARACTERISTICS (Note 3)

T_A = 25°C, over recommended operating conditions unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
POWER SUPPLY (VM)				•		
VM operating voltage	VM		6.5		40	V
VM operating supply current	I _{VM}	VM = 24V		2	10	mA
VM sleep current	I _{VMSLEEP}	VM = 24V			15	μA
Turn-on time (Note 4)	t _{on}	VM > VUVLO with IN1 or IN2 high		45		μs
LOGIC-LEVEL INPUTS (IN1, IN2)						
Input logic low voltage	V _{IL}				0.5	V
Input logic high voltage	V _{IH}		2			V
Input logic hysteresis	V _{HYS}			0.2		V
Input logic low current	IIL	VIN = 0V	-1		1	μA
Input logic high current	I _{IH}	VIN = 3.3V		33		μA
Pulldown resistance	R _{PD}	to GND		100		kΩ
Propagation dolay	+	Inx H to OUTx H change		0.2		μs
Propagation delay	t _{PD}	Inx L to OUTx L change		1.0		μs
Time to sleep	t _{sleep}	Inputs low to sleep		1.2	2.0	ms
MOTOR DRIVER OUTPUTS (OUT1	, OUT2)					
High-side FET on resistance	D	VM = 24 V, I = 1A,		260	200	mΩ
Figh-side FET off resistance	R _{DS(ON)_High}	f _{PWM} = 25 kHz		200	300	11122
Low-side FET on resistance	R _{DS(ON)_Low}	VM = 24 V, I = 1A, f _{PWM} = 25kHz		260	300	mΩ
Output dead time	t _{DEAD}			200		ns
CURRENT REGULATION	1	1				
ISEN gain	A _V	VREF = 2.5V	9.4	10	10.4	V/V
PWM off-time	t _{OFF}			30		μs
PWM blanking time	t _{BLANK}			3.2		μs
PROTECTION CIRCUITS		,		•		
	$V_{UVLO_{fall}}$	VM falls until UVLO triggers		5.8		V
VM undervoltage lockout	V _{UVLO_rise}	VM rises until operation recovers		6.0		V
VM undervoltage hysteresis	V _{UV,_HYS}	Rising to falling threshold		200		mV
Overcurrent protection trip level	I _{OCP}			4.2		А
Overcurrent deglitch time	t _{OCP}			2.5		μs
Overcurrent retry time	t _{RETRY}			4		ms

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Thermal shutdown temperature	T _{SD}			170		°C
Thermal shutdown hysteresis	T _{HYS}			40		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times (250^{\circ}C/W)$.

Note 3: 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

Note 4: t_{ON} applies when the device initially powers up, and when it exits sleep mode.

OPERATION

Overview

The SS8870T devices are optimized 8-pin devices for driving brushed DC motors with 6.5V to 40 V and up to 3.6-A peak current. The integrated current regulation restricts motor current to a predefined maximum. Two logic inputs control the H-bridge driver, which consists of four N-channel MOSFETs that have a typical $R_{DS(ON)}$ of 0.52 Ω (including one high-side and one low-side FET). A single-power input, VM, serves as both device power and the motor winding bias voltage. The integrated charge pump of the device boosts VM internally and fully enhances the high-side FETs. Motor speed can be controlled with pulse-width modulation, at frequencies between 0 to 100 kHz. The devices have an integrated sleep mode that is entered by bringing both inputs low. An assortment of protection features prevents the device from being damaged if a system fault occurs.

Bridge Control

The SS8870T output consists of four N-channel MOSFETs that are designed to drive high current. These outputs are controlled by the two logic inputs IN1 and IN2 as listed in Table 1.

IN1	IN2	OUT1	OUT2	DESCRIPTION
0	0	High-Z	High-Z	Coast; H-bridge disabled to High-Z (sleep entered after 1.2ms)
0	1	L	Н	Reverse (Current OUT2 \rightarrow OUT1)
1	0	н	L	Forward (Current OUT1 →OUT2)
1	1	L	L	Brake; low-side slow decay

Table 1. H-Bridge Control

The inputs can be set to static voltages for 100% duty cycle drive, or they can be pulse-width modulated (PWM) for variable motor speed. When using PWM, switching between driving and braking typically works best. For example, to drive a motor forward with 50% of the maximum RPM, IN1 = 1 and IN2 = 0 during the driving period, and IN1 = 1 and IN2 = 1 during the other period. Alternatively, the coast mode (IN1 = 0, IN2 = 0) for fast current decay is also available. The input pins can be powered before VM is applied.

Sleep Mode

When the IN1 and IN2 pins are both low for time t_{SLEEP} (typically 1.2 ms), the SS8870T device enters a low-power sleep mode, where the outputs remain High-Z and the device uses $I_{VMSLEEP}$ (μ A) of current. If the device is powered up while both inputs are low, it immediately enters sleep mode. After the IN1 or IN2 pins are high for at least 5 μ s, the device is operational 45 μ s (t_{ON}) later.

Current Regulation

In SS8870T, motor peak current can be limited by the analog reference input VREF and the resistance of external sense resistor on the ISEN pin according to the below equation:

$$I_{TRIP} (A) = \frac{VREF (V)}{A_V \times R_{ISEN}(\Omega)} = \frac{VREF (V)}{10 \times R_{ISEN}(\Omega)}$$

For example, if VREF =2.0V and a RISEN= 0.2Ω , the PWM current regulation mechanism will limits motor current to 1.0A mps no matter how much load is applied. When ITRIP is reached, the H-bridge enforces the inductor current into slow decay path by enabling both low-side FETs, and it does this for a fixed off time, T_{OFF} (typically 30µs).

After Toff time passes, the H-bridge output is re-enabled according to the logic states of two inputs, IN1 and IN2, and motor winding current is charging until reaching another ITRIP event, this charge time is heavily depends on the VM voltage, the back-EMF of the motor, and the inductance of the motor.

VM under voltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the under voltage lockout threshold voltage, all FETs in the H-bridge will be disabled. Operation resumes when VM rises above the UVLO threshold.

Overcurrent Protection (OCP)

If the output current exceeds the OCP threshold, IOCP, for longer than t_{OCP} , all FETs in the H-bridge are disabled.

As to SS8870T, after a duration of t_{RETRY} , the H-bridge is re-enabled according to the state of the INx pins. If the overcurrent fault is still present, the cycle repeats; otherwise normal device operation resumes.

Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature has fallen to a safe level, operation automatically resumes.

Device Functional Modes

The SS8870T devices can be used in multiple ways to drive a brushed DC motor.

PWM With Current Regulation

This scheme uses all of the capabilities of the device. The I_{TRIP} current is set above the normal operating current, and high enough to achieve an adequate spin-up time, but low enough to constrain current to a desired level. Motor speed is controlled by the duty cycle of one of the inputs, while the other input is static. Brake or slow decay is typically used during the off-time.

PWM Without Current Regulation

If current regulation is not required, the ISEN pin should be directly connected to the PCB ground plane. The VREF voltage must still be 0.3V to 5 V, and larger voltages provide greater noise margin. This mode provides the highest-possible peak current which is up to 3.6 A for a few hundred milliseconds (depending on PCB characteristics and the ambient temperature). If current exceeds 3.6 A, the device might reach overcurrent protection (OCP) or over temperature shutdown (TSD). If that happens, the device disables and protects itself for about 4ms (t_{RETRY}) and then resumes normal operation.

Static Inputs with Current Regulation

The IN1 and IN2 pins can be set high and low for 100% duty cycle drive, and I_{TRIP} can be used to control the current of the motor, speed, and torque capability.

VM Control

In some systems, varying VM as a means of changing motor speed is desirable.

APPLICATION INFORMATION

Application information

The SS8870T devices are typically used to drive one brushed DC motor as below:

Block Diagram

Figure 2. SS8870T Block Diagram

PACKAGE INFORMATION

ESOP8

Ormahad		Dimensions(mm)		
Symbol	Min.	Nom.	Max.	
Α	-	-	1.70	
A1	0.00	-	0.15	
A2	1.25		-	
b	0.31	-	0.51	
С	0.10	-	0.25	
е	1.27 BSC			
D	4.90 BSC			
D1	2.81	-	3.30	
E	6.00 BSC			
E1	3.90 BSC			
E2	2.05	-	2.41	
L	0.40	0.60	1.27	
θ	0°	-	8°	

Notes: Refer to JEDEC MS-012 BA

IMPORTANT NOTICE

Shenzhen LeadPower Semiconductor (LPS) CO.,LTD reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

LPS cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a LPS product. No circuit patent licenses are implied.

Shenzhen LeadPower Semiconductor (LPS) CO.,LTD