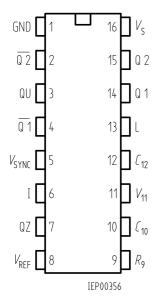

Phase Control IC TCA 785

Bipolar IC

Features


- Reliable recognition of zero passage
- Large application scope
- May be used as zero point switch
- LSL compatible
- Three-phase operation possible (3 ICs)
- Output current 250 mA
- Large ramp current range
- Wide temperature range

Туре	Ordering Code	Package
TCA 785	Q67000-A2321	P-DIP-16-1

This phase control IC is intended to control thyristors, triacs, and transistors. The trigger pulses can be shifted within a phase angle between 0 ° and 180 °. Typical applications include converter circuits, AC controllers and three-phase current controllers.

This IC replaces the previous types TCA 780 and TCA 780 D.

Pin Configuration (top view)

Pin Definitions and Functions

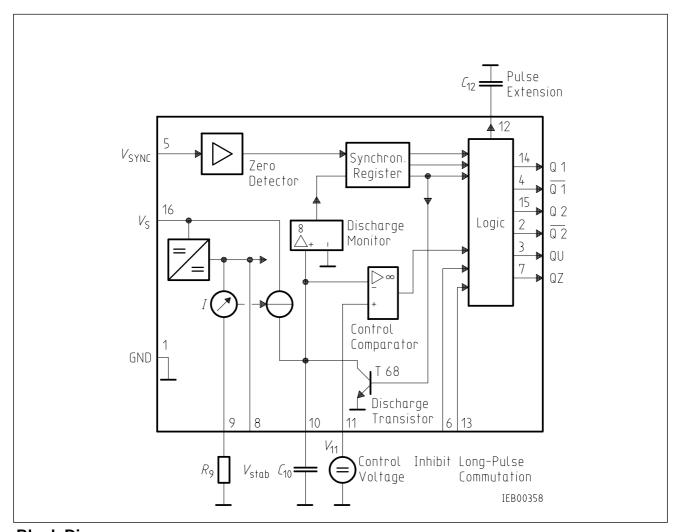
Pin	Symbol	Function
1	GND	Ground
2	Q2	Output 2 inverted
3	QU	Output U
4	Q2	Output 1 inverted
5	VSYNC	Synchronous voltage
6	I	Inhibit
7	QZ	Output Z
8	V ref	Stabilized voltage
9	R 9	Ramp resistance
10	C10	Ramp capacitance
11	<i>V</i> ₁₁	Control voltage
12	C ₁₂	Pulse extension
13	L	Long pulse
14	Q 1	Output 1
15	Q 2	Output 2
16	Vs Vs	Supply voltage

Functional Description

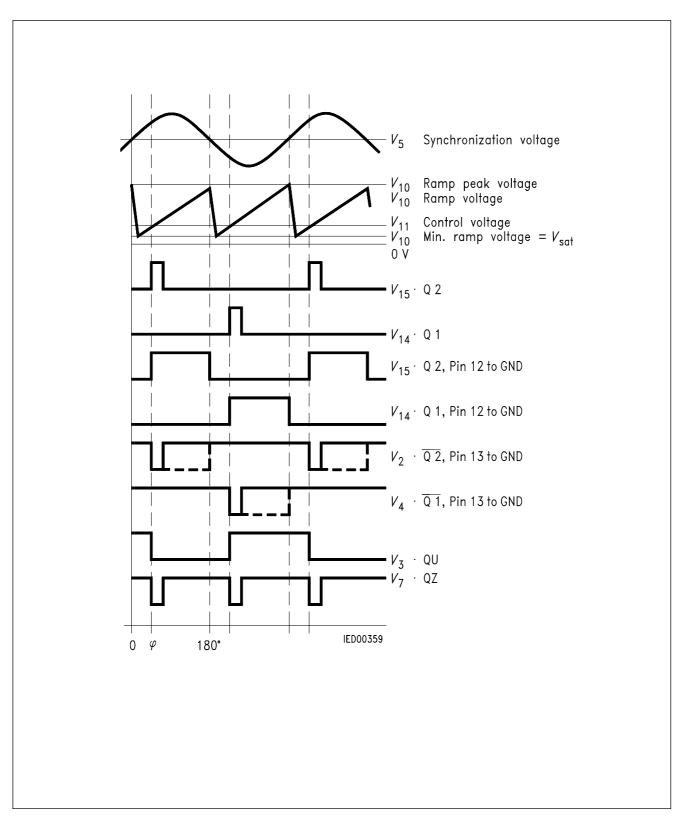
The synchronization signal is obtained via a high-ohmic resistance from the line voltage (voltage V_5). A zero voltage detector evaluates the zero passages and transfers them to the synchronization register.

This synchronization register controls a ramp generator, the capacitor C_{10} of which is charged by a constant current (determined by R_9). If the ramp voltage V_{10} exceeds the control voltage V_{11} (triggering angle φ), a signal is processed to the logic. Dependent on the magnitude of the control voltage V_{11} , the triggering angle φ can be shifted within a phase angle of 0° to 180°.

For every half wave, a positive pulse of approx. 30 μ s duration appears at the outputs Q 1 and Q 2. The pulse duration can be prolonged up to 180° via a capacitor C_{12} . If pin 12 is connected to ground, pulses with a duration between φ and 180° will result.


Outputs Q1 and Q2 supply the inverse signals of Q1 and Q2.

A signal of φ +180° which can be used for controlling an external logic, is available at pin 3.


A signal which corresponds to the NOR link of Q 1 and Q 2 is available at output Q Z (pin 7).

The inhibit input can be used to disable outputs Q1, Q2 and Q1, Q2.

Pin 13 can be used to extend the outputs $\overline{Q1}$ and $\overline{Q2}$ to full pulse length $(180^{\circ} - \varphi)$.

Block Diagram

Pulse Diagram

Absolute Maximum Ratings

Parameter	Symbol		Limit Values	
		min.	max.	
Supply voltage	Vs	- 0.5	18	V
Output current at pin 14, 15	IQ	- 10	400	mA
Inhibit voltage Control voltage Voltage short-pulse circuit	V ₆ V ₁₁ V ₁₃	- 0.5 - 0.5 - 0.5	Vs Vs Vs	V V V
Synchronization input current	V ₅	- 200	± 200	μΑ
Output voltage at pin 14, 15	V_{Q}		Vs	V
Output current at pin 2, 3, 4, 7	IQ		10	mA
Output voltage at pin 2, 3, 4, 7	V_{Q}		Vs	V
Junction temperature Storage temperature	$T_{ m i}$ $T_{ m stg}$	– 55	150 125	°C
Thermal resistance system - air	Rth SA		80	K/W

Operating Range

Supply voltage	<i>V</i> s	8	18	V
Operating frequency	f	10	500	Hz
Ambient temperature	TA	– 25	85	°C

Characteristics

 $8 \le V_S \le 18 \text{ V}; -25 \text{ °C} \le T_A \le 85 \text{ °C}; f = 50 \text{ Hz}$

Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Supply current consumption S1 S6 open $V_{11} = 0 \text{ V}$ $C_{10} = 47 \text{ nF}$; $R_{9} = 100 \text{ k}\Omega$	Is	4.5	6.5	10	mA	1
Synchronization pin 5 Input current R 2 varied Offset voltage	I 5 rms ΔV 5	30	30	200 75	μA mV	1 4
Control input pin 11 Control voltage range Input resistance	V ₁₁ R ₁₁	0.2	15	V10 peak	V kΩ	1 5

Characteristics (cont'd) $8 \le V_S \le 18 \text{ V}; -25 \text{ °C} \le T_A \le 85 \text{ °C}; f = 50 \text{ Hz}$

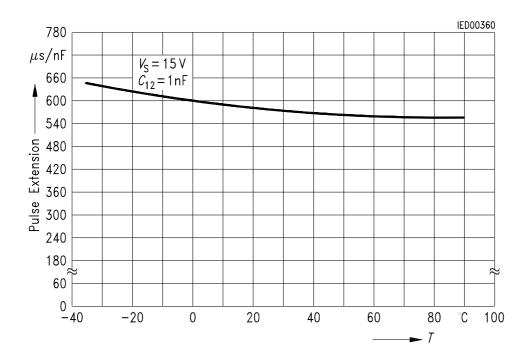
Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Ramp generator Charge current Max. ramp voltage Saturation voltage at capacitor Ramp resistance Sawtooth return time	I10 V10 V10 R9	10 100 3	225 80	1000 $V_2 - 2$ 350 300	μΑ V mV kΩ μS	1 1.6 1
Inhibit pin 6 switch-over of pin 7 Outputs disabled Outputs enabled Signal transition time Input current $V_6 = 8 \text{ V}$ Input current $V_6 = 1.7 \text{ V}$	V ₆ L V ₆ H tr I ₆ H — I ₆ L	4 1 80	3.3 3.3 500 150	2.5 5 800 200	V V μs μA	1 1 1 1
Deviation of I_{10} $R_9 = \text{const.}$ $V_S = 12 \text{ V}$; $C_{10} = 47 \text{ nF}$ Deviation of I_{10} $R_9 = \text{const.}$ $V_S = 8 \text{ V}$ to 18 V Deviation of the ramp voltage between 2 following half-waves, $V_S = \text{const.}$	I 10 I 10 ΔV 10 max	- 5 - 20	± 1	5 20	% %	1
Long pulse switch-over pin 13 switch-over of S8 Short pulse at output Long pulse at output Input current $V_{13} = 8 \text{ V}$ Input current $V_{13} = 1.7 \text{ V}$	V13 H V13 L I13 H — I13 L	3.5 45	2.5 2.5 65	2 10 100	V V μΑ μΑ	1 1 1
Outputs pin 2, 3, 4, 7 Reverse current $V_Q = V_S$ Saturation voltage $I_Q = 2 \text{ mA}$	I CEO V_{Sat}	0.1	0.4	10	μA V	2.6

Characteristics (cont'd) $8 \le V_S \le 18 \text{ V}; -25 \text{ °C} \le T_A \le 85 \text{ °C}; f = 50 \text{ Hz}$

Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Outputs pin 14, 15 H-output voltage $-I_{Q} = 250 \text{ mA}$	V14/15 H	<i>V</i> s – 3	Vs - 2.5	Vs - 1.0	V	3.6
L-output voltage $I_Q = 2$ mA	V14/15 L	0.3	0.8	2	V	2.6
Pulse width (short pulse) S9 open	t_{P}	20	30	40	μS	1
Pulse width (short pulse) with C_{12}	t_{P}	530	620	760	μs/ nF	1
Internal voltage control Reference voltage Parallel connection of 10 ICs possible	V_{REF}	2.8	3.1	3.4	V	1
TC of reference voltage	αREF		2 × 10 - 4	5 × 10 - 4	1/K	1

Application Hints for External Components

min max

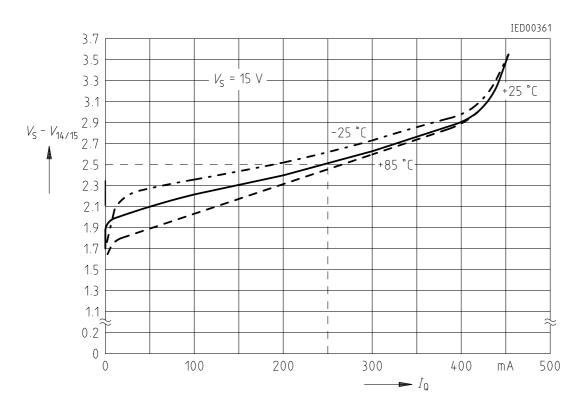

Ramp capacitance C_{10} 500 pF 1 μ F1) The minimum and maximum values of I_{10}

are to be observed

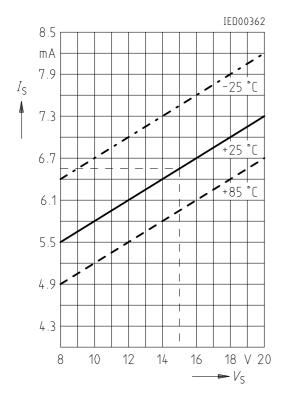
Triggering point $t_{\text{Tr}} = \frac{V_{11} \times R_9 \times C_{10}}{V_{\text{REF}} \times K}$

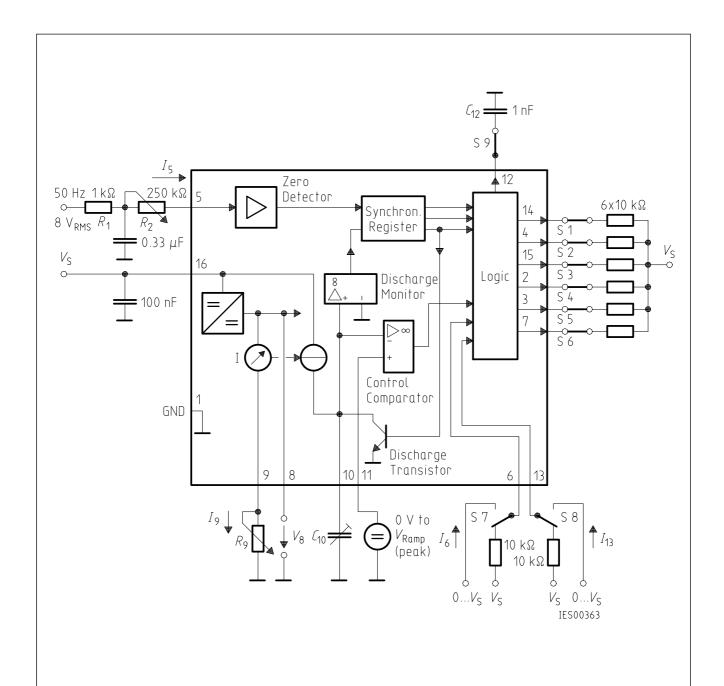
Charge current $I_{10} = \frac{V_{\text{REF}} \times K}{R_9}$ 2) Ramp voltage $V_{10 \text{ max}} = V_{\text{S}} - 2 \text{ V}$ $V_{10} = \frac{V_{\text{REF}} \times K \times t}{R_9 \times C_{10}}$ 2)

Pulse Extension versus Temperature

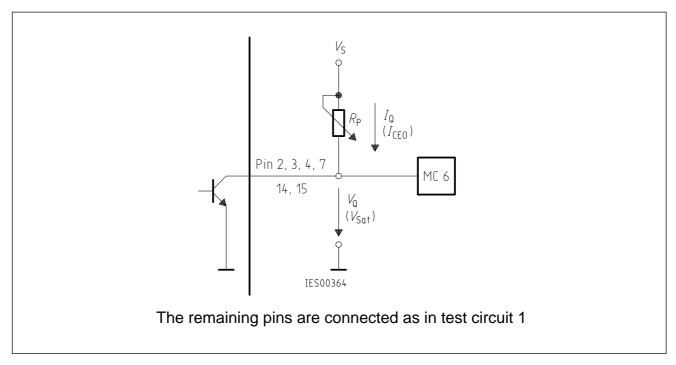


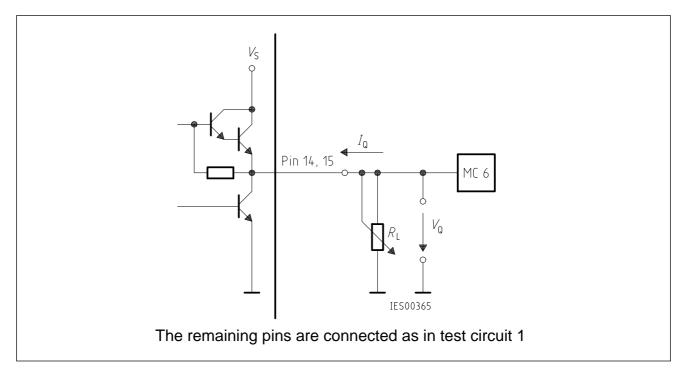
¹⁾ Attention to flyback times


 $^{^{2)}}$ $K = 1.10 \pm 20 \%$

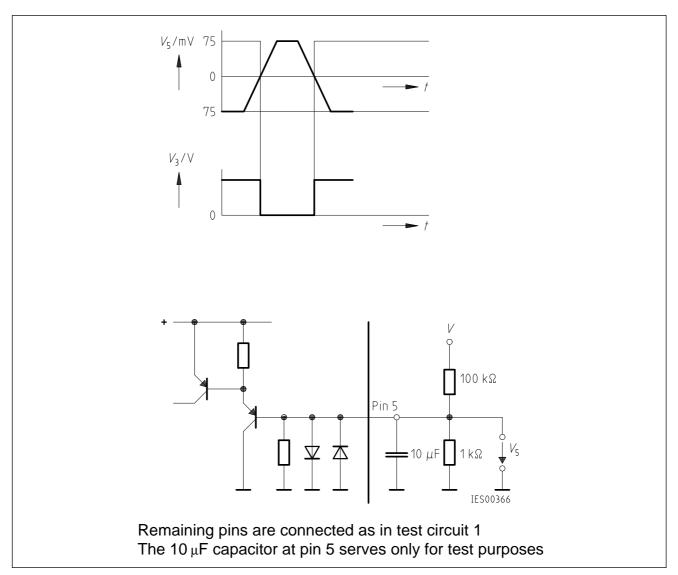


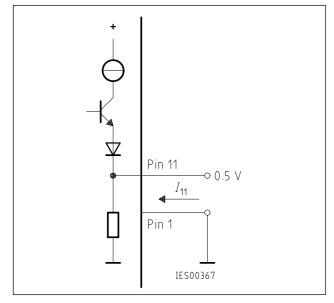
Output Voltage measured to + Vs

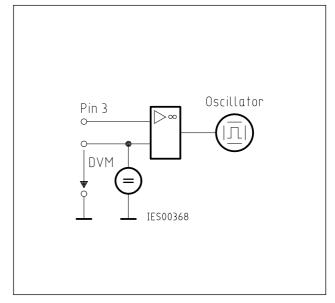

Supply Current versus Supply Voltage



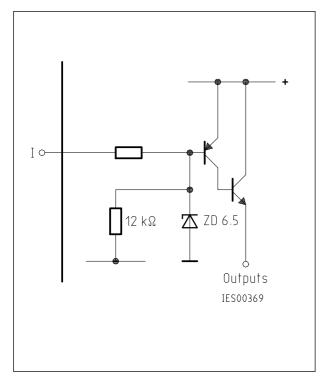
It is necessary for all measurements to adjust the ramp with the aid of C_{10} and R_{9} in the way that $3 \text{ V} \le V_{\text{ramp max}} \le V_{\text{S}} - 2 \text{ V}$ e.g. $C_{10} = 47 \text{ nF}$; 18 V: $R_{9} = 47 \text{ k}\Omega$; 8 V: $R_{9} = 120 \text{ k}\Omega$

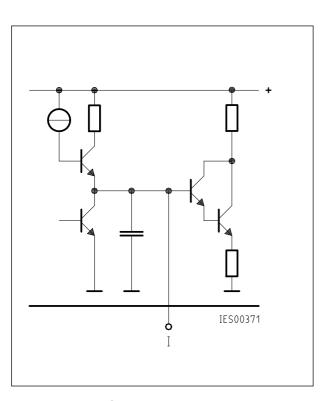

Test Circuit 1


Test Circuit 2

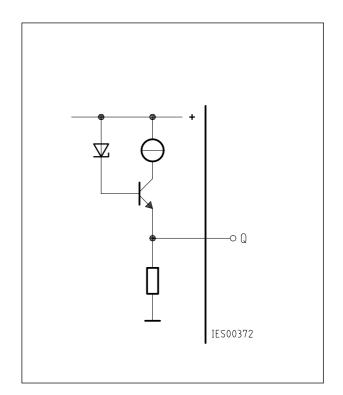


Test Circuit 3


Test Circuit 4

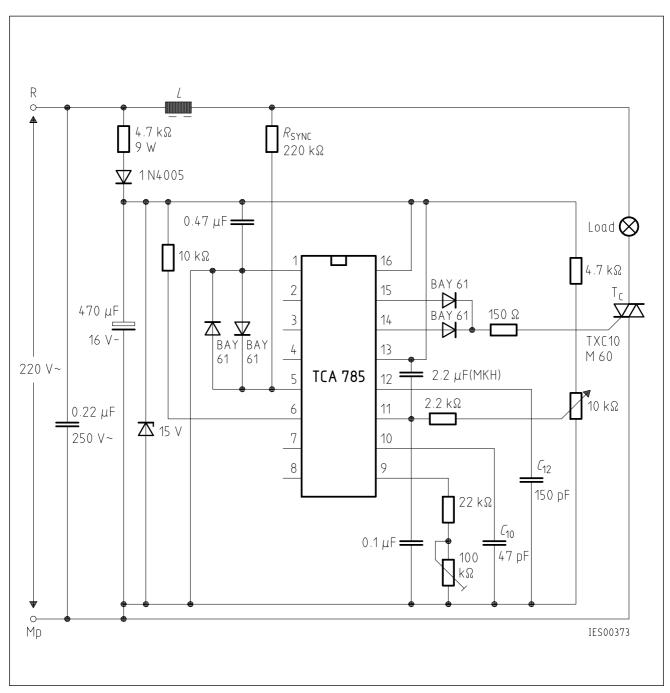

Test Circuit 5

Test Circuit 6

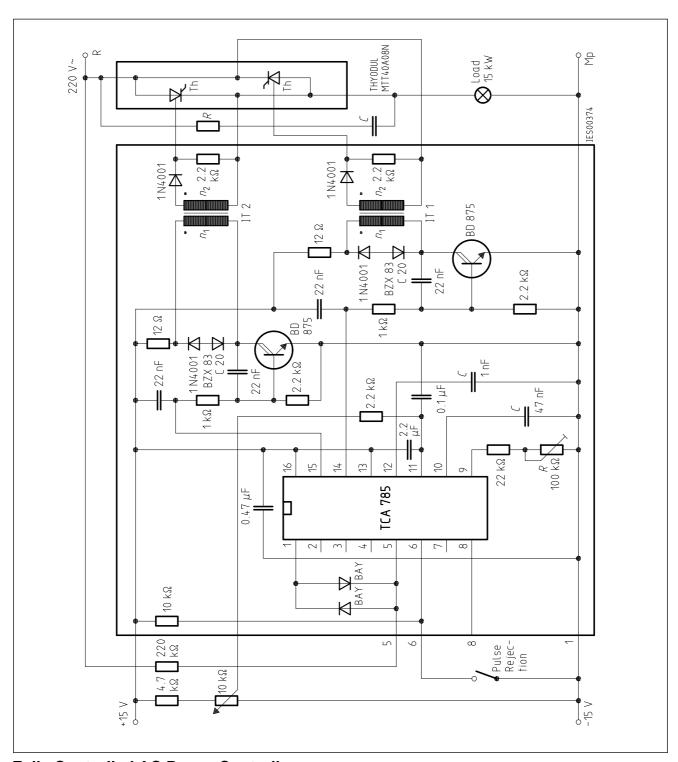


T O TES00370

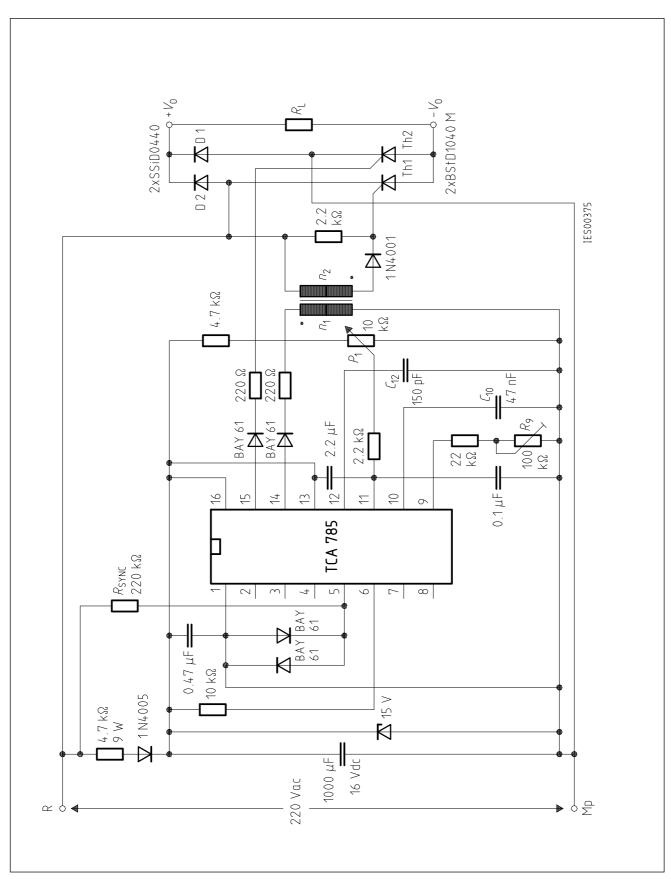
Inhibit 6



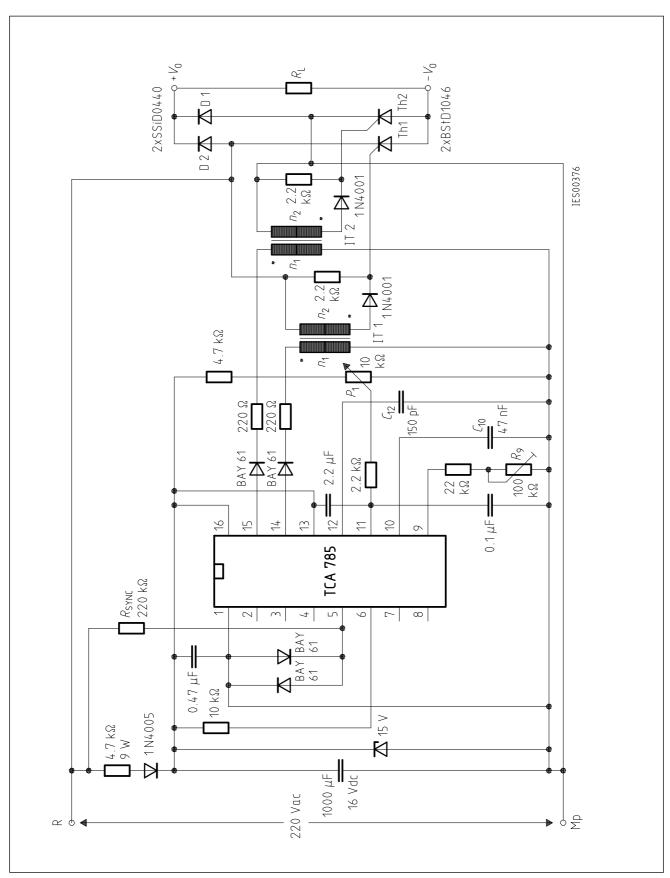
Long Pulse 13


Pulse Extension 12

Reference Voltage 8


Application Examples
Triac Control for up to 50 mA Gate Trigger Current

A phase control with a directly controlled triac is shown in the figure. The triggering angle of the triac can be adjusted continuously between 0° and 180° with the aid of an external potentiometer. During the positive half-wave of the line voltage, the triac receives a positive gate pulse from the IC output pin 15. During the negative half-wave, it also receives a positive trigger pulse from pin 14. The trigger pulse width is approx. $100\,\mu s$.



Fully Controlled AC Power Controller Circuit for Two High-Power Thyristors

Shown is the possibility to trigger two antiparalleled thyristors with one IC TCA 785. The trigger pulse can be shifted continuously within a phase angle between 0° and 180° by means of a potentiometer. During the negative line half-wave the trigger pulse of pin 14 is fed to the relevant thyristor via a trigger pulse transformer. During the positive line half-wave, the gate of the second thyristor is triggered by a trigger pulse transformer at pin 15.

Half-Controlled Single-Phase Bridge Circuit with Trigger Pulse Transformer and Direct Control for Low-Power Thyristors

Half-Controlled Single-Phase Bridge Circuit with Two Trigger Pulse Transformers for Low-Power Thyristors