TD1507

General Description

The TD1507 is a easy to use adjustable step-down (buck) switch-mode voltage regulators. The device is available in an adjustable output version. It is capable of driving a 2.5A load with excellent line and load regulation.

Requiring a minimum number of external components, the regulator is simple to use and include internal frequency compensation, and a fixed-frequency oscillator.

The output voltage is guaranteed to $\pm 3\%$ tolerance under specified input voltage and output load conditions. The oscillator frequency is guaranteed to $\pm 15\%$. External shutdown is included, featuring typically 80 μ A standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

The TD1507 is available in TO252-5L package.

Features

- · Adjustable output version
- Output adjustable from 1.23v to 34V
- Fixed 150KHz frequency internal oscillator
- Guaranteed 2.5A output load current
- Input voltage range up to 36V
- Low power standby mode, I_Q typically 70 μA
- TTL shutdown capability
- Excellent line and load regulation
- High efficiency
- Thermal shutdown and current limit protection
- Available in TO252-5L package

Applications

- Simple High-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter
- LCD monitor and LCD TV
- · DVD recorder and PDP TV
- Battery charger
- Step-down to 3.3V for microprocessors

Package Types

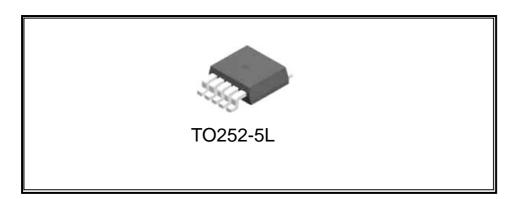
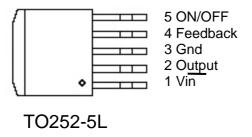
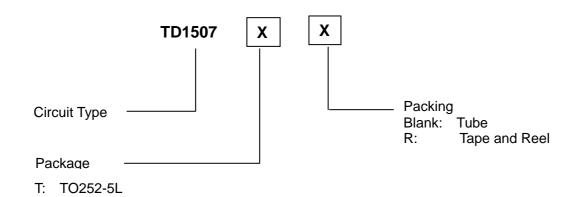



Figure 1. Package Types of TD1507

TD1507


Pin Assignments

Pin Descriptions

Name	Description
Vin	Input supply voltage
Output	Switching output
Gnd	Ground
Feedback	Output voltage feedback
ON/OFF	ON/OFF shutdown Active is "Low" or floating

Ordering Information

TD1507

Functional Block Diagram

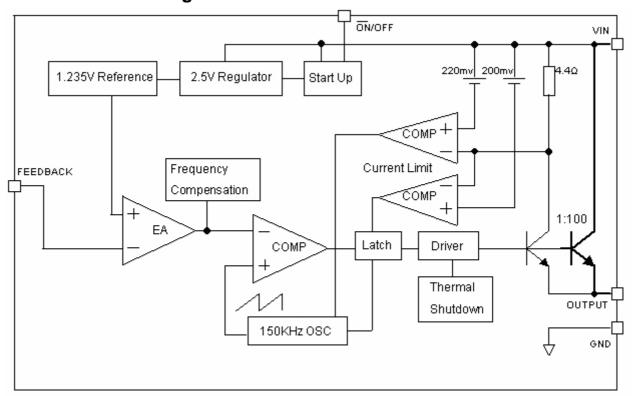


Figure 2. Functional Block Diagram of TD1507

Typical Application

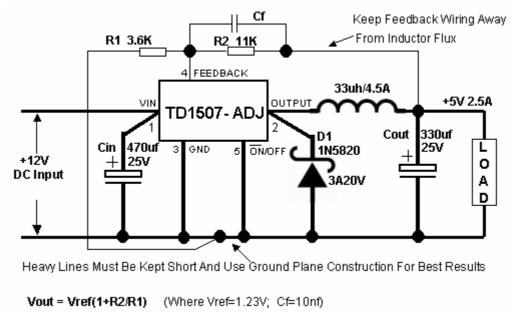


Figure 3. Typical Application of TD1507

TD1507

Absolute Maximum Ratings

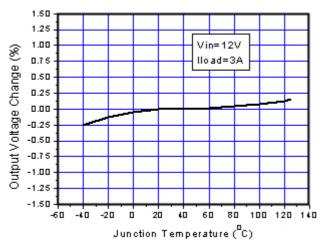
Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Parameter	Value	Unit
Supply Voltage Vin	-0.3 to 40	V
Feedback VFB pin voltage	-0.3 to Vin+0.3	V
ON/OFF Pin voltage	-0.3 to Vin+0.3	V
Output pin voltage	-0.3 to Vin+0.3	V
Output Voltage to Ground (Steady State)	-1	V
Power Dissipation	Internally limited	W
Operating Temperature Range	-40 to +125	°C
Storage Temperature	-65 to +150	°C
Lead Temperature (Soldering, 10 sec)	200	°C
ESD(HM)	2000	V

Electrical Characteristics

Unless otherwise specified, Vin = 12V. Iload = 0.5A, Ta = 25°C.

Symbol	Parameter	Conditions Min.		Тур.	Max.	Unit
I _b	Feedback bias current	V _{FB} =1.3V		10	50/100	nA
IQ	Quiescent current	V _{FB} =12V force driver off		5	10	mA
I _{STBY}	Standby quiescent current	ON/OFF=5V, V _{IN} =36V		70	150	uA
Fosc	Oscillator frequency		127	150	173	KHz
V _{SAT}	Saturation voltage	I _{OUT} =2A		1.10	1.4/1.5	V
I _{CL}	Current Limit	Peak Current (V _{FB} =0V)		4.5	5.5/ 6.5	Α
IL	Output leakage current	Output=0V (V _{FB} =12V)			50	uA
IL	Output leakage current	Output=-1V (V _{IN} =36V)		2	30	mA
V _{IL}	ON/OFF pin logic input Threshold voltage	Low (Regulator ON)		1.3	0.6	V
V _{IH}		High (Regulator OFF)	2.0	1.3		V
I _H	ON/OFF pin input current	V _{LOGIC} =2.5V(Regulator OFF)		5	15	uA


IL		V _{LOGIC} =0.5V(Regulator ON)		0.02	5	uA
θ_{JC}	Thermal Resistance Junction to Case	TO252-5L		10		°C/W
θ_{JA}	Thermal Resistance Junction to Ambient (Note1)	TO252-5L		50		°C/W
TD1507 ADJ	Vfb: Output Voltage	11V≤V _{IN} ≤36V, 0.2A≤I _{LOAD} ≤ 3A, V _{OUT} for 9V	1.193/ 1.180	1.23	1.267/ 1.280	V
	η: Efficiency	V _{IN} =12V,V _{OUT} =9V,I _{LOAD} =3A		88		%

Specifications with **boldface type** are for full operationg temperature range, the other type are for T_J =25 $^{\circ}$ C.

Note1: Thermal resistance with copper area of approximately 3 in².

TD1507

Typical Performance Characteristics

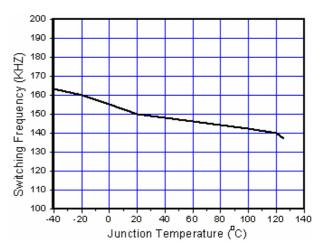
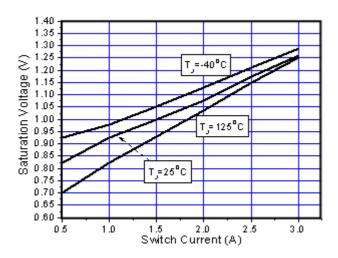



Figure 4. Output Voltage vs. Temperature

Figure 5. Switching Frequency vs. Temperature

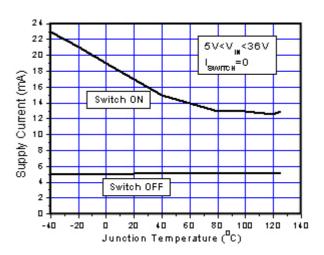


Figure 6. Output Saturation Characteristics

Figure 7. Quiescent Current vs. Temperature

TD1507

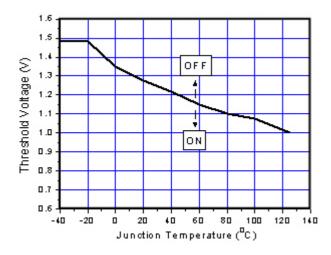


Figure 8. ON/OFF Pin Voltage

Figure 9. ON/OFF Pin Sink Current

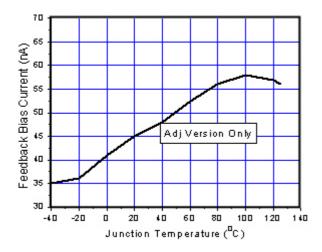


Figure 10. Output Saturation Characteristics

TD1507

Typical Application Circuit

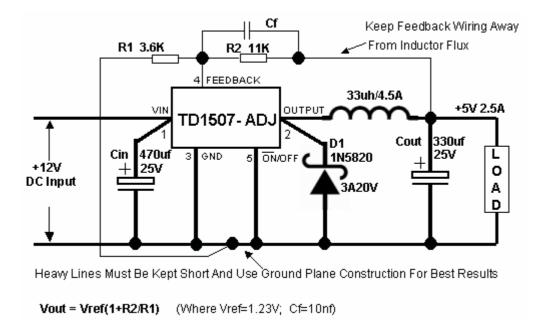


Figure 11. Typical Application of TD1507

Vout	R1	R2	Cf (Operational)
3.3V	1.6K	2.7K	33nf
5V	3.6K	11K	10nf
9V	6.8K	43K	1.5nf
12V	1.5K	13K	1nf

Table 1. Vout VS. R1, R2, Cf Select Table

Output	Input	Industor (I 1)	Output Capacitor (Cout)		
Voltage	Voltage	Inductor (L1)	Through Hole Electrolytic		
3.3V	6V ~ 18V	47uh	470uf/25V		
	6V ~36V	68uh	560uf/25V		
5V	8V ~ 18V	33uh	330uf/25V		
	8V ~36V	47uh	470uf/25V		
9V	12V ~18V	47uh	330uf/25V		
	12V ~36V	47uh	470uf/25V		
12V	15V ~ 18V	47uh	220uf/25V		
	15V ~36V	47uh	330uf/25V		

Table 2. Typical Application Buck Regulator Design Procedure

TD1507

Function Description

Pin Functions

$+V_{IN}$

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between ($+V_{IN}-V_{SAT}$) and approximately -0.5V, with a duty cycle of approximately V_{OUT} / V_{IN} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

Feedback

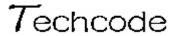
Senses the regulated output voltage to complete the feedback loop.

ON/OFF

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 80uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, the ON /OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

Thermal Considerations

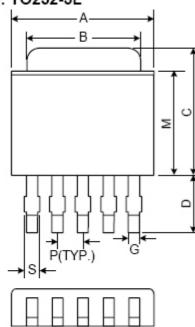
The TD1507 is available in TO252-5L package.

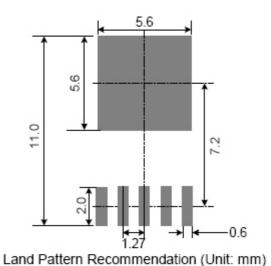

The TO252 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The TD1507 junction temperature rises above ambient temperature for a 2.5A load and different input and output voltages. The data for these curves was taken with the TD1507 (TO252)

package) operating as a buck switching regulator in an ambient temperature of 25°C (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.

The TO252 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in², and ideally should have 2 or more square inches of 2 oz. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in², only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC board with large copper areas and/or airflow are recommended.

TD1507 (TO252 package) iunction temperature rise above ambient temperature with a 2.5A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2.5A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages.


For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.



TD1507

Package Information

Package Type: TO252-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches			
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	6.35	6.60	6.85	0.250	0.260	0.270
В	5.20	5.35	5.50	0.205	0.211	0.217
С	6.80	7.00	7.30	0.268	0.276	0.287
D	2.20	2.50	2.80	0.087	0.098	0.110
Р	1.27 REF.				0.050 REF.	
S	0.50	0.65	0.80	0.020	0.026	0.031
G	0.40	0.50	0.63	0.016	0.020	0.025
Н	2.20	2.30	2.40	0.087	0.091	0.094
J	0.45	0.52	0.58	0.018	0.020	0.023
K	0.00	0.08	0.15	0.000	0.003	0.006
L	0.90	1.20	1.63	0.035	0.047	0.064
M	5.40	5.80	6.20	0.213	0.228	0.244